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1 Introduction

The current production methods for livestock follow the just-in-time philosophy of man-
ufacturing industries. Feedstock and animals are grown in different areas. Animals are
moved from one farm to another, depending on their age. Unfortunately, shocks propagate
rapidly through such systems; an interruption to the feed supply has a much larger impact
when farms have minimal surplus supplies in-stock than when they have large reserves. The
just-in-time movement of animals between farms serves as another vulnerability. Stopping
movement of animals to and from a farm with animals infected by a disease will have effects
that quickly spread through the system. Nurseries supplying the farm will have nowhere to
send their animals as they grow up. Finishers and slaughterhouses supplied by the farm will
have their supply interrupted.

The devastating Foot and Mouth Disease (FMD) that hit the United Kingdom (UK) in
2001 lead to the slaughter of millions of animals. The outbreak shook many western nations
as they watched a nation with an advanced animal health surveillance and response system
fail to get FMD under control, in part because they were unable to mount a rapid response in
the face of modern agricultural marketing systems [15]. In an effort to eradicate the disease,
the marketing channels were stopped, putting uninfected producers in the situation of having
no income to maintain their livestock and no means to move them to locations where feed,
shelter, and other support were available. As a result, between six million and ten million
animals were destroyed in the UK over seven months, with over one-third of those animals
being destroyed for welfare reasons [41]. Two years after the outbreak, animal agriculture
in the UK was still declining, a chilling postscript to the widespread infrastructure damage
FMD had wrought on the nation [37].

More recently, the world has witnessed the apparent failure of widespread national and
international plans for using animal destruction to stem the spread of the highly pathogenic
H5N1 strain of avian influenza. In a process frighteningly reminiscent of the UK FMD
experience, the programs have also allowed domestic markets within and beyond affected
countries to suffer. Global consumption of poultry has dropped sufficiently to cause US
domestic producers (e.g., Tyson, Pilgrims Pride, et al.) to absorb decreased demand and
decreased prices. This drop has translated to decreases, as well, in non-poultry markets,
exacerbating the market effects of a disease not even present in the western hemisphere
[19]. It has become painfully apparent that in the large-scale, interdependent, and highly
mobile animal agriculture industry of the USA, the unintended consequences and market
ripple effects of a disease incursion into our system could be even more severe than what was
witnessed in the UK in 2001 and across Europe in 2005-6, and could induce decision makers
to call for even more draconian measures than previously seen. What is needed is a new view
of how our emergency response programs might affect modern animal agriculture, a view
that allows workers to assess the potential for other prevention strategies and responses. The
view should also allow analysts to identify bottlenecks in the food and feed supply chain,
and to test potential mitigation tools, procedures, and/or practices to increase the resilience
of animal agriculture to catastrophic animal diseases.
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This paper presents initial statistical and mathematical modeling ideas to address the
above issues, using the North Carolina swine industry’s potential response to FMD as an
example. We focused our attention on the North Carolina swine industry because it is both
the second largest swine industry in the United States, and is local to us. Our goal was to
develop a model that could be used to investigate how small perturbations to the agricultural
supply system would affect its overall performance. A hurricane that throttles inter-farm
transportation for a short duration, or a disease outbreak that spreads through distribution
channels are example causes of the perturbations of interest. In the former case, the just-in-
time delivery systems may not provide enough slack to absorb the shock. In the latter case,
strategies that involve destruction of all livestock in an infected branch of the system may
be overly harsh; a more moderate response may be as effective without the high toll on the
infrastructure.

We model a simplified swine production network in North Carolina containing four levels
of production nodes: growers/sows (Node 1), nurseries (Node 2), finishers (Node 3), and
processing plants/slaughter houses (Node 4). At grower or sow farms (Node 1), the new
piglets are born and typically weaned three weeks after birth. The three-week old piglets are
then moved to the nursery farms (Node 2) to mature for another seven weeks. They are then
transferred to the finisher farms (Node 3), where they grow to full market size, which takes
about twenty weeks. Once they reach market weight, the matured pigs are moved to the
processors (slaughter houses) (Node 4). Pork products then continue through wholesalers to
consumers. There are also several inputs to the system which we will not consider, such as
food, typically corn grown in the midwest. There are several types of breeding farms where
pure-bred stock are raised; these are typically crossed to produce hybrid strains for pork
production.

Our paper is organized as follows. In Section 2, we formulate a nonlinear stochastic
model for our agricultural network and show how it can be converted to an equivalent (in
a sense made precise below) deterministic differential equation model. This deterministic
model readily lends itself to simulations and sensitivity analysis techniques. In Section 3
we present numerical simulations of the production model (without perturbations such as
infectious disease), and carry out a sensitivity analysis of the model. Simulations of the model
in the presence of an infectious disease are presented in Section 4. Finally, in Section 5 we
give our conclusions and remarks for future work.

In addition to the development of models for a typical production network permitting
perturbations, a significant contribution in this paper is the demonstration of stochastic,
mathematical and computational methodology that is available to domain scientists, statisti-
cians and applied mathematicians working in a concerted team effort on complex problems
of the type exemplified here. The co-authors of this paper constituted such a team orga-
nized under the auspices and with the support of the Statistical and Applied Mathematical
Sciences Institute (SAMSI) as a year long working group in its recent research program on
National Defense and Homeland Security.
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2 Modeling

We consider stochastic models to track an agricultural network. We are interested in how the
parameters used in the model affect the overall capacity of a network, and how one discerns
the existence and location of any bottlenecks. With deterministic models, one can answer
the first question with a sensitivity analysis. Thus, after developing a typical stochastic
production model, we also show how to obtain its deterministic approximation. We then
demonstrate how to superimpose a simple contagious disease model on the production model
that allows simulation of dynamics and spread of FMD through a production chain.

2.1 Basic Model

We consider a simplified swine production network with four aggregated nodes: sows (Node 1),
nurseries (Node 2), finishers (Node 3), and slaughter houses (Node 4). Our goal is to study
the effects of perturbations within the network. This can be done either by affecting the
nodes or the transitions between nodes directly or indirectly. For instance, a problem with
the breeding farms would result in a reduction of sows available for producing new piglets.
This would result in a reduced rate of transition from Node 1 to Node 2, since we could not
grow as many piglets. We could then track the effect of this through our network.

Although unavoidable in actual production processes, we assume in our example that
there are no net losses in the network (i.e., the total number of pigs in the network remains
constant) and that the only deaths occur at the slaughter houses. Thus we assume that the
number of processed pigs per day at the slaughter houses is equal to the number of newborn
piglets per day at the growers. We can model reduced birth-rates by reducing the rate at
which piglets move to the nurseries. This leads us to deal with a closed network. We note
that this approximation is realistic when the network is efficient and operates at or near full
capacity (i.e, when the number of animals removed from the chain are immediately replaced
by new production/growth, avoiding significant idle times). Our closed network model for
the swine production is summarized schematically in Figure 1.

SlaughterFinisherNurserySows

N4N3N1 N2

Figure 1: Aggregated agricultural network model.

Each node with corresponding population number Ni, i = 1, . . . , 4, in Figure 1 represents
an aggregation of all the production units corresponding to that level in the production
network. Given a specific production network, any of the four levels of the chain may be
broken into its constituent units (e.g., farms), and analyzed in detail as a separate sub-
network. The directed edges between the nodes represent the movement of the pigs through
the network. The rate is determined by the pigs’ residence time, the number of pigs at each
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node, and the capacity constraints at the corresponding nodes. Let Li denote the capacity
constraint at node i, i = 1, . . . , 4. Since we have a closed network, it is assumed that there
is no capacity constraint at Node 1 and therefore we take L1 = ∞. We also define Sm to
be the maximum exit rate at Node 4, i.e., the maximum killing capacity at the slaughter
house. The residence times at each node, together with the capacity constraints and the
slaughterhouse killing capacity, based on very rough estimates of swine production in North
Carolina [1], are given in Table 1.

Name Sows Nursery Finisher Slaughter

Node N1 N2 N3 N4

Piglet residence time (days) 21(N1→N2) 49(N2→N3) 140(N3→N4) 1(N4→N1)

Assumed capacity (in thousands) ∞ 825 2,300 20

Table 1: Network parameters based on swine production in NC.

2.2 Stochastic and Deterministic Models

We model the evolution of the food production network shown in Figure 1 as a continuous
time discrete state density dependent jump Markov Chain (MC) [3, 21] with a discrete state
space embedded in an R4 non-negative integer lattice L. The state of this MC at time t is
denoted by X(t) = (X1(t), . . . , X4(t)), where Xi(t) is the number of pigs at node i at time
t, i = 1, . . . , 4.

The rates of transition of X(t) are nonlinear functions λi : L → [0,∞) for i = 1, . . . , 4,
and for x ∈ L are given by:

λ1(x) := q1(x1 − 1, x2 + 1, x3, x4) = k1 x1 (L2 − x2)+

λ2(x) := q2(x1, x2 − 1, x3 + 1, x4) = k2 x2 (L3 − x3)+

λ3(x) := q3(x1, x2, x3 − 1, x4 + 1) = k3 x3 (L4 − x4)+

λ4(x) := q4(x1 + 1, x2, x3, x4 − 1) = k4 min(x4, Sm) (1)

where ki, i = 1, . . . , 4, is proportional to the service rate at node i; Li, i = 2, 3, 4, is the
buffer size (capacity constraint) at node i and Sm is the slaughter capacity at node 4 as
discussed above. For any real z, the symbol (z)+ is defined as the non-negative part of z,
i.e., (z)+ = max(z, 0). Then q1(x1 − 1, x2 + 1, x3, x4) is given by

q1(x1 − 1, x2 + 1, x3, x4) ≡ lim
h→0+

Pr[X(t + h) = (x1 − 1, x2 + 1, x3, x4)|X(t) = (x1, x2, x3, x4)]

h
.

The other qi are given similarly.
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Let Ri(t) i = 1, . . . , 4, denote the number of times that the i’th transition occurs by time
t. Then Ri is a counting process with intensity λi(X(t)), and the corresponding stochastic
process can be defined by

Ri(t) = Yi

( ∫ t

0

λi(X(s))ds
)
, i = 1 . . . , 4, (2)

where the Yi are independent unit Poisson processes. That is, sample paths ri(t) of Ri(t)
are given in terms of sample paths x(t) of X(t) by

ri(t) = Yi

( ∫ t

0

λi(x(s))ds
)
, i = 1 . . . , 4. (3)

We write Ri in this form to illustrate that λi is a rate of the corresponding counting process.
Let ei, i = 1, . . . , 4, be standard basis vectors of R4 and define, for i incremented by one

modulo 4, the vectors
νi = e(i+1)(mod4) − ei i = 1, 2, . . . , 4,

which represent the vector of changes in system counts at ith transition. We write the state
of the system at time t as

X(t) = X(0) +
∑

i

Ri(t)νi = X(0) + νR(t), (4)

where ν is the matrix with rows given by the νi, and R(t) is the (column) vector with
components Ri(t). In the chemical literature, the matrix νT is often referred to as the
stoichiometric matrix [29]. More specifically, we have

X1(t) = X1(0)−R1(t) + R4(t)

X2(t) = X2(0) + R1(t)−R2(t)

X3(t) = X3(0) + R2(t)−R3(t)

X4(t) = X4(0) + R3(t)−R4(t). (5)

The above system typically cannot be solved for a stationary distribution and an empirical
approach based on the so-called Gillespie algorithm [29] can be used to investigate the long
term behavior of the system (see Section 3.2). The approximate large population behavior
of an appropriately scaled system may be also analyzed via macroscopic deterministic rate
equations as we shall explain next (the original theory is due to Kurtz and is discussed in
[21] and the references therein).

Let N be the total network or population size. If N is known we may consider the
animal units per system size or the units concentration in the stochastic process CN(t) =
X(t)/N with sample paths cN(t). For large systems this approach leads to a deterministic
approximation (obtained as solutions to the system rate equation defined below) to the
stochastic equation (4), in terms of c(t), the large sample size average over sample paths or
trajectories cN(t) of CN(t).
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We rescale the rate constants ki, Li and Sm as follows:

κ4 = k4, κi = Nki, i = 1, 2 or 3,

sm = Sm/N, li = Li/N. (6)

According to Equation (1), this rescaling implies that

λi(x) = κi xi(Li+1 − xi)+/N = Nκi c
N
i (li+1 − cN

i )+ i = 1, 2, 3,

and
λ4(x) = κ4 min(x4, Sm) = Nκ4 min(cN

4 , sm).

Recall that for large N the Strong Law of Large Numbers (SLLN) for the Poisson Process
Y implies Y (Nu)/N ≈ u [30]. One can use this fact, along with the rescaling of the constants
as given above, to argue that sample paths ri(t) for the counting process (2) defined in terms
of the sample paths x(t) or cN(t) = x(t)/N may be approximated for large N in terms of the
deterministic variables c(t), the averages over sample paths or trajectories cN(t) of CN(t),
by

r
(N)
i (t) =

1

N
ri(t) =

1

N
Yi

( ∫ t

0

λi(x(s))ds
)

=
1

N
Yi

(
N

∫ t

0

κic
N
i (s)(li+1 − cN

i+1(s))+ ds
)

≈
∫ t

0

κi ci(s)(li+1 − ci+1(s))+ ds for i = 1, 2, 3, (7)

and similarly

r
(N)
4 (t) =

1

N
r4(t) ≈

∫ t

0

κ4 min(c4(s), sm) ds.

For a full and rigorous discussion of this “approximation in mean”, see Chapters 6.4 and 11
of [21] and Chapter 5 of [3]. The averages c(t) satisfy a system of deterministic ordinary
differential equations which can be heuristically derived by beginning with Equation (5).
Upon dividing both sides of each equation by N and applying the above, we obtain the rate
equations, i.e., the system of integral equations approximating via the SLLN the original
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stochastic system, as follows:

cN
1 (t) = c1(0)− r

(N)
1 (t) + r

(N)
4 (t)

≈ c1(0)−
∫ t

0

κ1c1(s)(l2 − c2(s))+ ds + κ4 min(c4(t), sm)

cN
2 (t) = c2(0) + r

(N)
1 (t)− r

(N)
2 (t)

≈ c2(0)−
∫ t

0

κ2c2(s)(l3 − c3(s))+ ds +

∫ t

0

κ1c1(s)(l2 − c2(s))+ ds

cN
3 (t) = c3(0) + r

(N)
2 (t)− r

(N)
3 (t)

≈ c3(0)−
∫ t

0

κ3c3(s)(l4 − c4(s))+ ds +

∫ t

0

κ2c2(s)(l3 − c3(s))+ ds

cN
4 (t) = c4(0) + r

(N)
3 (t)− r

(N)
4 (t)

≈ c4(0) +

∫ t

0

κ3c3(s)(l4 − c4(s))+ ds− κ4 min(c4(t), sm). (8)

Upon approximating the cN
i (t) on the left above by the ci(t) and differentiating the

resulting equations, we find that the integral equation system is equivalent to a system of
ordinary differential equations for c(t) ∈ R4 given by

dc1(t)

dt
= −κ1c1(t)(l2 − c2(t))+ + κ4min(c4(t), sm)

dc2(t)

dt
= −κ2c2(t)(l3 − c3(t))+ + κ1c1(t)(l2 − c2(t))+

dc3(t)

dt
= −κ3c3(t)(l4 − c4(t))+ + κ2c2(t)(l3 − c3(t))+

dc4(t)

dt
= −κ4min(c4(t), sm) + κ3c3(t)(l4 − c4(t))+ (9)

with the initial conditions c(0) = c0. As we shall see in the next section, solutions of these
equations yield quite good approximations to the sample paths of the stochastic system.

We remark that the product nonlinearities xi (Li+1 − xi+1)+ of (1) where transportation
occurs more rapidly the further the node level is from capacity (i.e., the system reacts more
rapidly to larger perturbations from capacity) are only one possible form for these terms.
One could also reasonably argue for alternative terms of the form xi χi+1 where χi+1 is the
characteristic function for the set {(Li+1 − xi+1) > 0} so that the transportation rate from
a node depends only on the number available at that node so long as capacity at the next
node has not been reached. We remark that in this case the sensitivity analyses below are
more difficult due to a lack of continuity of the dynamics in the system equations.
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3 Computations and Model Comparison

3.1 Model Parameter Values

In order to carry out numerical simulations and to compare the results of the stochastic and
deterministic models (equations (5) and (9), respectively), we must choose reasonable values
for all model parameters. We note that our paper focuses on methodological issues and, for
confidentiality and proprietary reasons, only limited information on the swine production
network was available to us. Thus some of these parameter values may be only rough
approximations to those that might be obtained using inverse problem techniques with data
from actual production networks [1]. Consequently, the subsequent discussions in this paper
are in no way an attempt to validate the above models. Nonetheless, we believe that the
order-of-magnitude approximate parameter values we are using here are sufficient to allow
us to develop and demonstrate effective use of methods and techniques which could be used
with actual production network based parameters.

The parameters of the stochastic model, with the exception of the transition rate con-
stants ki, are given in Table 1. From the expressions for the transition rates (1), we see that
the residence times, ti, that pigs spend at node i are given by

ti =
1

ki

1

(Li+1 −Xi+1(t))
for i = 1, 2 or 3, (10)

and t4 = 1/k4 = 1. As discussed above, the nonlinear form of the transition rates (1) means
that the residence time at a given node depends on how far the following node is below its
capacity. Consequently, we determine the ki by assuming that the given residence times
pertain to the network in its equilibrium state.

Considering the deterministic model equations (9), we see that, if there is to be a flow
through the system, the equilibrium population sizes N∗

i = Nc∗i at each node must be less
than the capacities of the nodes. It is then straightforward to see that the equilibrium
numbers of individuals at each of the first three nodes are proportional to the ti. This
makes intuitive sense since there is no loss as individuals move between nodes, and so, at
equilibrium, the relative residence times must equal the relative numbers of individuals at
the nodes. This argument need not apply to the slaughter node, however, since individuals
will spend longer there than the specified one day residence time if the equilibrium value N∗

4

is greater than Sm. The flow rate from node four back to node one is the smaller of N∗
4 and

Sm and so we have that

(N∗
1 , N∗

2 , N∗
3 , N∗

4 ) =

{
(t1N

∗
4 , t2N

∗
4 , t3N

∗
4 , N∗

4 ) if N∗
4 ≤ Sm

(t1Sm, t2Sm, t3Sm, N∗
4 ) otherwise.

(11)

Notice that solving for the equilibrium of the deterministic model does not give us the value
of N∗

4 : since the network is closed, the total size of the population is equal to its value at
the initial time. The values of the ki, for i = 1, 2 and 3, are then given by

ki =
1

ti
(
Li+1 −N∗

i+1

) . (12)
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The parameter values and the initial states for the system (5) are tabulated in Table 2.

Parameters Definition Values Units

k1 transition rate at node 1 1/(90 · 21) 1/(pigs·days)

k2 transition rate at node 2 1/(200 · 49) 1/(pigs·days)

k3 transition rate at node 3 1/(5 · 140) 1/(pigs·days)

k4 transition rate at node 4 1 1/days

L1 capacity node 1 ∞ pigs

L2 capacity node 2 825 pigs

L3 capacity node 3 2300 pigs

L4 capacity node 4 20 pigs

Sm slaughter capacity 440 pigs

X1(t0) initial condition 800 pigs

X2(t0) initial condition 700 pigs

X3(t0) initial condition 1500 pigs

X4(t0) initial condition 165 pigs

Table 2: Aggregated agricultural network model: Parameters for stochastic simulations,
together with our chosen initial conditions. All numbers of pigs are given in thousands here.

To obtain the parameters we use in our deterministic simulations we simply rescale the
parameters in Table 2 by the total network size N = X1(t0) + X2(t0) + X3(t0) + X4(t0) =
3, 165, 000, using equation (6) and ci(t0) = Xi(t0)/N for i = 1, . . . , 4. The results are given
below in Table 3.
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Parameters Definition Values Units

κ1 scaled rate at node 1 1.674 1/days

κ2 scaled rate at node 2 0.323 1/days

κ3 scaled rate at node 3 4.521 1/days

κ4 scaled rate at node 4 1 1/days

l2 scaled capacity at node 2 2.607 · 10−1 dimensionless

l3 scaled capacity at node 3 7.267 · 10−1 dimensionless

l4 scaled capacity at node 4 6.3 · 10−3 dimensionless

sm scaled slaughter capacity 1.390 · 10−1 dimensionless

c1(0) scaled initial condition 2.528 · 10−1 dimensionless

c2(0) scaled initial condition 2.212 · 10−1 dimensionless

c3(0) scaled initial condition 4.739 · 10−1 dimensionless

c4(0) scaled initial condition 5.21 · 10−2 dimensionless

Table 3: Aggregated agricultural network model: Rescaled parameter values and initial
conditions for the deterministic model.
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3.2 Stochastic Simulations

The standard method for the stochastic simulation of the discrete state continuous time
Markov Chain of the type considered here is based on a standard Monte Carlo algorithm,
also known as the Gillespie algorithm [29]. This algorithm is described below:

1. For a given state of the system x, compute λi(x) for i = 1 . . . ,M (in our case M = 4).

2. Calculate the summation of the rates λ =
∑M

i=1 λi(x) and simulate the time until the
next transition by drawing from an exponential distribution with mean 1/λ.

3. Simulate the transition type RX ∈ {1, . . . , 4} by drawing from the discrete distribution
with P (RX = i) = λi(x)/λ.

4. Update the system state x and repeat.

Using the above algorithm implemented in the statistical software R [40], we carried out
numerous simulations for the model (5) with the initial conditions and values for parameters
q∗ = (k1 . . . , k4, Sm, L2, L3, L4) given in Table 2.
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Figure 2: Simulation of the stochastic model (5) of the food production chain via the Gillespie
algorithm. Parameter values are as given in Table 2; N=3,165,000.

A sample of five realizations is plotted in Figure 2. Note that the realizations exhibit
very little visible differences. However, when one carries out the simulations for a smaller
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system (N = 3, 165 pigs with the parameters in Table 2 scaled accordingly), the variations are
readily visible as can be seen in Figure 3. We also remark that these two figures offer graphic
depictions of the approximation theory discussed in Section 2.2 where in the case of very
large N one can cannot distinguish between the stochastic simulations and the corresponding
deterministic simulations for the sample path averages.
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Figure 3: Simulation of the stochastic model (5) with N=3,165 and parameter values from
Table 2 scaled accordingly.

3.3 Deterministic Simulation

We numerically solved the ODE system (9) using the ode15s solver in Matlab. We fixed
the parameters q = q∗ to be the same as in the stochastic simulation above (but scaled
as in Table 3) and graph the solution of the rate equations (9) for t ∈ [0, 100] in Figure 4.
In Figure 4(left), we plot the numerical solution of the concentrations in system (9). To
facilitate comparison with the MC realizations plotted in Figure 2, we also depict the rescaled
quantities Ni(t) = Nci(t), which provide approximations to averages over sample paths
of Xi(t) in Figure 4(right). As expected, we find that the stochastic and deterministic
computations provide similar numerical results with the realizations fluctuating about the
solution of the deterministic system for the averages as predicted by the theory.

In order to observe the finer dynamics in the network, we plot the solution of the network
on a smaller time scale in Figure 5(left). We find that our model solutions approach the
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steady states rather quickly. All components remain stable thereafter suggesting that the
steady states are (at least locally) asymptotically stable (this can be verified with analytical
arguments). We believe that this behavior of the model describes the food production
network realistically when it is uninterrupted by external events. In Figures 5(right), 6(left)
and 6(right) we observe similar behavior in the food production chain for different values
of the parameters L4 and Sm. As one can observe in these figures, when the value of Sm

is sufficiently large, the state N4, which is related to the replenishment of the network,
will never reach Sm, making the slaughter capacity constraint inactive in the production
system. Only when Sm is smaller than a certain critical value will it be active and in this
case we observe accumulation of animals in the slaughter house (e.g., see Figure 6(right)).
These calculations along with numerous others we carried out suggest reasonable stability
properties of the production chain in the absence of any interventions such as FMD (we will
investigate such disturbances below).
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Figure 4: Numerical solution of the deterministic (rate equation) system (9) for t ∈ [0, 100].
Parameter values are as given in Table 3.
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Figure 5: (left) Numerical solution of the corresponding deterministic system for t ∈ [0, 50].
(right) Numerical solution of the deterministic system (9) for t ∈ [0, 210] with L4 = 1000
and Sm = 440. All other parameter values are as given in Table 3.
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Figure 6: (left) Numerical solution of the deterministic system (9) for t ∈ [0, 210] with
L4 = 1000 and Sm = 100. (right) Numerical solution of the deterministic system (9) for
t ∈ [0, 210] with L4 = 1000 and Sm = 5. All other parameter values are as given in Table 3.

3.4 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the deterministic model (9), investigating
how much the solution of the system changes when the rates κi, the capacities li, or the initial
conditions c0i, i = 1, . . . , 4 change. This analysis will be used to identify the parameters and
the initial conditions to which the system is the most and least sensitive.

A second issue we address here, which is of great interest for inverse or parameter esti-
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mation problems in a typical nonlinear regression model, is the sensitivity of the parameter
estimates with respect to the data measurements. We carry out this analysis by means of
the generalized sensitivity functions (GSF) recently introduced by Thomaseth and Cobelli
[44]; these are specifically designed for input-output identification experiments. GSF are
based on information theoretical criteria (the Fisher information matrix) and, when used in
conjunction with the traditional sensitivity functions, give a more accurate picture on the
time distribution of the information content of measured outputs with respect to individual
model parameters.

In order to use the well-developed sensitivity analysis for the theory of dynamical systems
for our purposes, we begin by writing the system (9) in vector form. We introduce the
notation

c(t) = (c1(t), c2(t), c3(t), c4(t))
T , q = (κ1, ..., κ4, sm, l2, ..., l4), c0 = (c1(0), ..., c4(0))T ,

and denote by F = (f1, f2, f3, f4)
T the vector function whose entries are given by the expres-

sions in the right side of (9). Then F : R4×R8 → R4, and we can write our ODE system in
the general vector form

dc

dt
(t) = F(c,q), (13)

c(0) = c0.

In order to quantify the variation in the state variable c(t) with respect to changes in the
parameters qj, j = 1, . . . , 8 and the initial conditions c0k, k = 1, . . . , 4, we are naturally led
to consider the sensitivity matrices

Y = {yij}i=1,...,4
j=1,...,8

=

{
∂ci

∂qj

}
i=1,...,4
j=1,...,8

, (14)

and

Z = {zik} i=1,...,4
k=1,...,4

=

{
∂ci

∂c0k

}
i=1,...,4
k=1,...,4

. (15)

We note that since our function F is sufficiently regular, the solutions ci are differentiable with
respect to qj and c0k and therefore our sensitivity matrices Y and Z are well defined. The
physical interpretation of the sensitivity matrices is obvious. Similar to the partial derivatives
through which they are defined, they have a local character (in time and parameters). If,
for example, the entry yij = ∂ci/∂qj of the matrix Y takes values very close to zero in a
certain time subinterval, then the state variable ci is insensitive to the parameter qj on that
particular subinterval. The same entry yij can take large values on a different subinterval,
indicating that in this time subinterval, the state variable ci is very sensitive to the parameter
qj.

From sensitivity analysis theory for dynamical systems [10, 20, 25, 36, 42], we also know
that Y(t) is a 4× 8 matrix that satisfies the ODE system

Ẏ(t) = Fc(c,q)Y(t) + Fq(c,q), (16)

Y(0) = 04×8,
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and Z(t) is a 4× 4 matrix that satisfies

Ż(t) = Fc(c,q)Z(t), (17)

Z(0) = I4×4.

Here we have used the notation Fc = ∂F/∂c and Fq = ∂F/∂q for the 4 × 4 and the 4 × 8
Jacobian matrices of F with respect to c and q, respectively, while 0 and I are the zero and
the identity matrices with appropriate dimensions. Note that while equations (16), (17) are
linear in Y and Z, they must be solved in tandem with equation (13), which is nonlinear.
Consequently, the sensitivity analysis involves the solution of a set of nonlinear equations.

We will compute the sensitivity of the system (13) with respect to q and c0 when the
solutions are essentially at steady state. We carry this out by numerically solving the systems
(16) and (17) for the same values of the parameters q = q∗ and initial conditions c = c∗0 as
used in the stochastic simulations presented above (i.e., those given in Table 3) and by
evaluating the solution at the fixed time t = 210 (arbitrarily chosen, but sufficiently large for
our system to closely approach its steady state). Due to the nature of our problem, in which
the parameters have different units and the state variables vary widely over many orders of
magnitude, it is appropriate to consider the relative sensitivities Sci,qj

defined as the limit of
the relative change in ci divided by the relative change in qj when the relative change in qj

goes to zero, i.e.,

Sci,qj
= lim

∆qj→0

∆ci/ci

∆qj/qj

. (18)

A simple analysis of the definition above (assuming that both ci and qj are nonzero) yields
that the relative sensitivity Sci,qj

can be obtained by normalizing the usual sensitivities
∂ci/∂qj such that

Sci,qj
=

∂ci

∂qj

· qj

ci

. (19)

We note that the Sci,qj
are dimensionless variables, invariant with respect to changes in units

for ci and qj, which we can utilize to compare the degree of sensitivity of the state variables
with respect to different parameters. In Table 4, we tabulate the relative sensitivities at
time t = 210 of each state variable ci with respect to each parameter qj and each initial
condition c0k. For any fixed parameter/initial condition, we also tabulate the sensitivity of
the system, cumulatively defined as the Euclidean norm of the relative sensitivities of the
four state variables with respect to that parameter/initial condition. In other words, the
sensitivity of the system with respect to qj is given by

Sqj
=

[ 4∑
i=1

S2
ci,qj

]1/2

. (20)

For the particular choice of the parameters q = q∗ and for the particular initial condition
c0 = c∗0, the data displayed in the last column of Table 4 reveals that near the steady-state
(t = 210) the system (9) is most sensitive (in decreasing order) to l3, c03 and l2 and least
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c1 c2 c3 c4 System

κ1 −2.65× 10−1 8.97× 10−2 8.34× 10−3 2.08× 10−3 2.80× 10−1

κ2 −4.50× 10−1 −5.78× 10−2 8.76× 10−2 2.19× 10−2 4.62× 10−1

κ3 1.70× 10−1 −9.05× 10−3 −2.40× 10−2 2.43× 10−1 2.98× 10−1

κ4 5.45× 10−1 −2.28× 10−2 −7.18× 10−2 −2.67× 10−1 6.12× 10−1

sm 0 0 0 0 0

l2 −2.42× 100 8.22× 10−1 7.65× 10−2 1.91× 10−2 2.56× 100

l3 −5.17× 100 −6.65× 10−1 1.00× 100 2.51× 10−1 5.32× 100

l4 6.80× 10−1 −3.61× 10−2 −9.63× 10−2 9.75× 10−1 1.19× 100

c01 1.86× 100 2.27× 10−1 2.11× 10−2 5.29× 10−3 1.88× 100

c02 1.63× 100 1.99× 10−1 1.85× 10−2 4.63× 10−3 1.64× 100

c03 3.49× 100 4.27× 10−1 3.97× 10−2 9.93× 10−3 3.52× 100

c04 3.84× 10−1 4.69× 10−2 4.37× 10−3 1.09× 10−3 3.87× 10−1

Table 4: Relative sensitivities of the state variables/ system with respect to parameters qj

and the initial conditions c0k near steady state (t = 210). Baseline parameter values (q = q∗)
and initial conditions c0 = c∗0 are as in Table 3.

sensitive to sm. One interesting outcome we obtain from the analysis of the sensitivity data
presented in Tables 4 and 5 is that the state variable c1 is more sensitive to the parameter l3
and the initial condition c03 as compared to the parameters κ1, κ4, sm and l4 and the initial
condition c01 on which this state variable depends directly. Without this sensitivity analysis,
we could not infer this behavior simply by looking at the system (9) since the parameters
l3 and c03 do not appear in the right side of the equation which defines dc1/dt. We find
similar results for c2 and c4 which are more sensitive to the non-direct initial condition c03

as compared to their direct initial conditions c02 and c04.
As we pointed out previously, the sensitivity functions by definition have a local charac-

ter both in the time domain and in the parameter domain, which implies that the results
displayed in Table 4 characterizes the sensitivity of the system only for q = q∗, c0 = c∗0 and
t = 210. However, to obtain a broader picture of the sensitivity map for our system (9) near
steady state (t = 210) or for the whole time interval, one can compute the relative sensitivi-
ties (19) and (20) with respect to qj and c0k on a uniform grid in a parameter neighborhood
around the central values q∗j and c∗0k and analyze the results thus obtained. (Although we
carried out such analyses, the results are not presented here.)

The sensitivity analysis we have performed so far is usually encountered in simulation
studies (direct problems) where we need to quantify the effects of parameter variations
on the trajectories of model outputs. Unlike simulations, in identification studies (inverse
problems) one typically wants to estimate model parameters from data measurements and
one question of interest is to determine at which time points the measurements are most
informative for the estimation of specific parameters. In addition one may also desire a
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c1 c2 c3 c4 System

sm sm sm sm sm

κ3 κ3 c04 c04 κ1

κ1 κ4 κ1 κ1 κ3

c04 l4 c02 c02 c04

κ2 c04 c01 c01 κ2

κ4 κ2 κ3 c03 κ4

l4 κ1 c03 l2 l4
c02 c02 κ4 κ2 c02

c01 c01 l2 κ3 c01

l2 c03 κ2 l3 l2
c03 l3 l4 κ4 c03

l3 l2 l3 l4 l3

Table 5: Summary of the sensitivity analysis presented in Table 4. The columns rank the
parameters and initial conditions in order of increasing sensitivity for the four state variables,
ci, and the system.

priori information about the degree of correlation between model parameters which the
TSF functions of (14) and (15) used alone cannot provide. To address these questions,
Thomaseth and Cobelli [44] introduced the generalized sensitivity functions (GSF) which
provide information on the relevance of measurements of output variables of a system for
the identification of certain parameters as well as on parameter correlation. More precisely,
the generalized sensitivity functions describe the sensitivity of the parameter estimates with
respect to data measurements. We illustrate below the utility of these functions to provide
a better understanding of our network model, by performing a sensitivity analysis for the
inverse problem of estimating the parameters κ’s of the system (9) through an ordinary least
squares procedure.

For a single-output model f(t, θ) (e.g., the case where one has longitudinal observations
of one component ci of the system (13)) with discrete time measurements

y(tk) = f(tk, θ0) + εk, k = 1, . . . , M, (21)

where θ0 is the “true” parameter values (assumed to exist in most statistical inference and
information content formulations–see [8, 11, 43]), the generalized sensitivity functions (GSF)
are defined by

gs(tk) =
k∑

i=1

{([ M∑
j=1

1

σ2(tj)
∇θf(tj, θ0)∇θf(tj, θ0)

T
]−1

× ∇θf(ti, θ0)

σ2(ti)

)
• ∇θf(ti, θ0)

}
, (22)

where ”•” represents element-by-element multiplication (see [44] and the Appendix of [7] for
motivation and details). The measurement errors εk in (21) are assumed to be independently
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and identically distributed with zero mean and known variance σ2(tk) and the nonlinear
model function f(t, θ) is assumed to be differentiable with respect to θ. Moreover, for
simplicity, it is assumed that the observations y(tk), as represented in (21), are used to
estimate θ0 by minimizing the weighted sum of squares (WSS)

WSS(y, θ) =
M∑
i=1

[y(ti)− f(ti, θ)]
2

σ2(ti)
. (23)

In our case, the nonlinear model function f is replaced by a vector–valued function which is
the solution of the system (9) and the generalized sensitivity functions (GSF) are given by

gs(tk) =
k∑

i=1

4∑

l=1

{([ M∑
j=1

4∑

l=1

1

σ2
l (tj)

∇θcl(tj, θ0)∇θcl(tj, θ0)
T
]−1

× ∇θcl(ti, θ0)

σ2
l (ti)

)
• ∇θcl(ti, θ0)

}
.

(24)
Here ∇θcl represents the gradient of the state variable cl with respect to θ, where θ ∈ RP is a
vector including all (or just a subset of) the parameters κ’s and l’s and the initial conditions
c0’s.

We note that the generalized sensitivity functions (24) are vector-valued functions having
the same dimension P as θ and defined only at the discrete time points tk, k = 1, . . . , M . They
are cumulative functions, at each time point tk taking into account only the contributions of
the measurements up to tk, thus representing the influence of longitudinal measurements in
contributing to the parameter estimates.

From (24) it follows that all the components of gs are one at the end of the experiment,
i.e., gs(tM) = 1. If one defines gs(t) = 0 for t < t1 (gs is zero when no measurement is
collected) and interpolates gs continuously between observation times, then each component
gsp of gs varies continuously from 0 to 1 during the experiment. As we will see in the example
below, this transition is not necessarily monotonic (gsp, p = 1, . . . , P may have oscillations)
nor is it restricted to values in [0, 1] (i.e., gsp may take values outside [0, 1]) if large corre-
lations between parameter estimates exist. As discussed in [44], the time subinterval during
which this transition has the sharpest increase corresponds to measurements which provide
the most information on possible variations in the corresponding true model parameters.

Since the GSF theory is developed in the context of estimation problems, we considered
next an estimation problem using simulated “data”. The data used for inversion was gen-
erated by first numerically solving the system (9) for the parameter values given in Table 3
and then adding 5% Gaussian white noise to the solution obtained. We consider the problem
of using this data to estimate the parameters κ1, κ2, κ3 and κ4 in an ordinary least squares
procedure (with the other parameters and initial conditions fixed at the values from Table
3). The true values for the κ’s are κ̄ = (1.674, 0.322, 4.521, 1)T . For θ0 = κ̄, the generalized
sensitivity functions (24) along with the traditional sensitivity functions for the system (9)
are presented in Figure 7. In both figures we note a very well defined time subinterval, from
t = 0 to about t = 60, where both GSF and TSF plots exhibit sharp increases/decreases.
After this, the TSFs reach very quickly a steady state and the GSFs are forced to approach
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Figure 7: Generalized and Traditional Sensitivity Functions for κ1, κ2, κ3, κ4, employing a
simulated data set with M = 210, generated as discussed in the text. Underlying parameter
values are κ1 = 1.674, κ2 = 0.322, κ4 = 4.521, κ4 = 1, while all other parameters are as
given in Table 3.

one. According to the theory, the interval [0, 60] is the time region where measurements
are most informative for estimating the true parameters κ̄. So at least intuitively, sampling
more data points in this region would result in more information about the parameters κ̄
and therefore more accurate estimates for them. By computing the correlation matrix whose
elements are given by standard formulas in least squares theory [9, 43], one can also observe
that strong correlations exist between estimates for κ3 and κ4. In fact, the correlation matrix
for these parameters is given by

Corr κ1 κ2 κ3 κ4

κ1 1.0000 0.4941 0.0004 0.2209
κ2 0.4941 1.0000 0.1388 0.1497
κ3 0.0004 0.1388 1.0000 -0.9502
κ4 0.2209 0.1497 -0.9502 1.0000

which is in agreement with the dynamics of the curves shown in Figure 7. Positive correlation
between κ1 and κ2 is clearly indicated as the corresponding gsf graphs increase together while
the negative correlation between κ3 and κ4 is evidenced by the early opposite slope behavior
in their corresponding gsf graphs.

Ordinary least squares inverse problems carried out with different sets of data points
illustrate and support the theory. We first performed the least squares minimization for a
data set DS1 consisting of a total of 15 observations, of which 8 were taken at equidistant
points in the interval [0, 60] and 7 taken at equidistant points in the interval [80, 210] (for
simplicity, we exclude the transition interval [60, 80] from our analysis here). The estimates
for κ1, κ2, κ3 and κ4 along with the R4 Euclidian norm of the error are displayed in Table 6.
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Data Points in Estimates for

Data Set [0,60] [80,210] Total κ1 κ2 κ3 κ4 error

DS1 8 7 15 1.638 0.329 1.775 2.028 2.932

DS2 15 7 22 1.579 0.305 4.341 0.966 0.207

DS3 30 7 37 1.708 0.302 2.728 1.178 1.803

DS4 8 14 22 1.625 0.322 1.830 1.786 2.804

DS5 8 0 8 1.686 0.337 2.379 1.597 2.224

DS6 15 0 15 1.736 0.330 6.378 1.064 1.859

DS7 30 0 30 1.724 0.298 3.549 1.013 0.973

DS8 0 17 17 12.540 1.966 14.587 9.814 17.314

DS9 0 33 33 45.554 7.588 69.183 32.589 84.600

DS10 0 66 66 51.161 9.842 92.137 36.002 106.964

True Parameter Values 1.674 0.322 4.521 1

Table 6: Parameter estimates for the transition rates κ1, κ2, κ3 and κ4 with different data
sets.

If we increase the number of data points in the interval [0, 60] from 8 to 15 and keep the
number of data points in [80, 210] the same (see DS2 entry, same table), we observe a
significant decrease in the Euclidian norm of the error from 2.932 to 0.207 which represents
a significant increase in the accuracy of the parameter estimates. A similar decrease from
2.224 to 1.859 and then to 0.973 is observed when we solve the least squares problem only
with data from [0, 60] (see DS5, DS6 and DS7 entries). Thus, numerical calculations support
the fact that increasing the number of data points in the region [0, 60] yields more accurate
estimates for the parameter κ̄, in agreement with the theoretical expectations from TSF and
GSF.

A totally different outcome is obtained when we carry out numerical estimation with an
increasing number of data points in the interval [80, 210]. As one can see by comparing the
entries DS1 and DS4 in Table 6, only a small gain is obtained in the accuracy of the parameter
estimates is gained by doubling the number of data points in the interval [80, 210]. Moreover,
when we try to estimate the parameters κ̄ with data from the interval [80, 210] alone (see
DS8, DS9 and DS10), we obtain very large errors which increase in magnitude as the number
of sample points increases. Although puzzling at first view, this phenomenon is not surprising
at all from the perspective of the theory presented above and that presented in [6]. Indeed, by
blindly sampling more data points from the region where the generalized sensitivity functions
exhibit the so called “forced-to-one” artifact and the traditional sensitivity curves are flat, we
simply introduce redundancy in the sensitivity matrix, thus increasing the condition number
of the Fisher information matrix for our problem. For an illustration and discussion of this
phenomenon, see [6]. By the Cramér-Rao inequality, the consequence is that the variance
of the unbiased estimator (and the corresponding standard errors) will be huge, making our
estimates less useful. The same phenomenon (introduction of redundancy in the sensitivity
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matrix) is responsible for the poorer results which are obtained when we estimate κ̄ using
data set DS3 (the Euclidian norm of the error increased as compared to DS2, where we
doubled the number of points in [0, 60]). We observe an important drawback of the GSF:
while they specify the most informative regions with respect to the estimation of parameters,
they do not provide any information about the necessary number of data points to be used
in those regions.

We remark that in this section we have illustrated a methodology to quantify the sen-
sitivity with respect to parameters and initial conditions of a large complex system. This
methodology is a fundamental tool in identifying those parameters in a model which require
further, more in-depth investigation as well as the basis of a statistical analysis for quantify-
ing uncertainty in estimators (e.g., see [5, 6, 9, 11, 43]) as well as information content based
model selection techniques [8].

4 Foot-and-Mouth Disease

Having established a basic model for the movement of animals (pigs) in the agricultural
system (the pork industry of North Carolina), we are now ready to model the spread of an
infectious disease in the food production network. In this section we describe the incorpora-
tion of an SIR-type infection into the system and present simulations to illustrate the spread
of Foot and Mouth Disease throughout the aggregated agricultural network.

We describe the infection by an SIR process [2, 12]. It is assumed that a population can
be partitioned into three groups: susceptible (S), infectious (I) and removed (R). In many
settings the removed class represents individuals who have recovered from the infection.
Individuals move between these classes as they become infected and recover from infection.
Recovery is assumed to confer permanent immunity to infection and the demography of the
population (i.e., births and non disease-related deaths) is ignored. In a well-mixed population
the epidemiological model can be described by the flowchart of Figure 8 and equations (25).

Susceptible

RIS

Infectious Recovered
γ  Iβ  SI      /        N

Figure 8: Flow diagram of the simple SIR model.

dS

dt
= −βSI

N
dI

dt
=

βSI

N
− γI (25)

dR

dt
= γI.
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Here, S, I and R denote the numbers of susceptible, infective and removed individuals,
respectively. The transmission parameter is β: this parameter, when combined with the rate
at which individuals meet each other and the probability that an infective would infect a
susceptible during any one such meeting, yields the transmission rate. It is assumed that
recovery occurs at constant rate γ, so that 1/γ is the average duration of infection. The
population size is denoted by N , and we have in this case that N = S + I + R.

The behavior of the simple SIR model is governed by the basic reproductive number,
R0 [2, 12, 31, 14]. This quantity equals the number of secondary infections caused by
the introduction of a single infectious individual into an otherwise completely susceptible
population. In terms of model parameters, the basic reproductive number is given by

R0 = β/γ.

An outbreak of infection can only ever occur if R0 is greater than one, otherwise the number
of infectives can never increase.

We now combine the agricultural network model and the SIR model to produce a de-
scription of the potential spread of an SIR-type infection in our agricultural system. It is
most convenient for us to work with the numbers of individuals of each type found at the
various nodes of the network, and so we convert the concentrations of animals of the network
model (9) into numbers. We write the number of individuals found at node i as Ni, and so
we have that Ni(t) = Nci(t).

We expand the first three nodes of the network, i.e., those describing the growers/sows,
nurseries and finishers, by including an SIR model within each of them. The infection
statuses of the animals at the ith node are tracked by the quantities Si, Ii and Ri. Since Ni

is defined to be the total number of animals at this node we have that Ni = Si + Ii + Ri.
We make the following set of assumptions about the infection process and its impact

upon the agricultural system:

(1) Pigs are born healthy, but susceptible. Piglets are introduced into the network at the
first node.

(2) There is no infection or recovery during transport between the nodes. This is based
on the idea that, in most cases, transportation takes no more than a couple of days,
which is relatively short compared to the amount of time the pigs spend at each node.

(3) There is no infection in the slaughter node. In the absence of human intervention this
does not mean that the infectious animals are not processed: the assumption is that
the infection is not propagated after the animal’s death.

(4) Infected pigs in node i recover at rate γi. These recovery rates may differ between the
nodes and, since the individuals found at different nodes will have different ages, these
parameters depict age-dependent recovery rates.

(5) Recovered pigs have temporary immunity, i.e., pigs do not immediately become suscep-
tible after recovering from FMD. The rates at which recovered pigs become susceptible
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again are ρi (i = 1, 2 or 3). While some diseases afford permanent immunity to the re-
covered animal, immunity acquired after FMD infection wanes in a matter of months.
If vaccination of animals were considered there would be an accumulation of animals
in the recovered groups of the appropriate nodes.

(6) We assume that the FMD-related death rate is small enough that we can ignore such
deaths. Control strategies such as culling infective or susceptible animals could be
modeled by including death terms.

(7) Since our network model assumes that the system is closed, we assume that any deaths
are replenished by the introduction of piglets into the network. As already men-
tioned, these introductions occur into the first node. Consequently, as illustrated in
the flowchart, Figure 9, the slaughtered animals that leave node four effectively return
to the S1 class. Similarly, if animal culling were being considered, the model would
include flows from the appropriate classes back to S1.

(8) No human intervention. In the model as presented here, we assume that humans do
not make any adjustments to operation of the agricultural system in response to the
infection: animal movement and processing continues as normal. Of course, one of the
main aims of creating a model such as this is to enable the consideration of control
strategies. In this study, we do not do this as we wish to first establish the baseline
(no-control) behavior of the system.

I3 N4

NurseryGrower SlaughterFinisher

S1

I1

S2

R1

I2

R2

S3

R3

Figure 9: Flow diagram of the aggregated agricultural network model with SIR infection.

With this set of assumptions we obtain the following system of equations for the deter-
ministic model of the aggregated agricultural network model with an SIR infection.
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dS1

dt
= −β1S1I1/N1 + ρ1R1 − k1S1(L2 −N2)+ + k4 min(N4, Smax)

dI1

dt
= β1S1I1/N1 − γ1I1 − k1I1(L2 −N2)+

dR1

dt
= γ1I1 − ρ1R1 − k1R1(L2 −N2)+

dS2

dt
= −β2S2I2/N2 + ρ2R2 − k2S2(L3 −N3)+ + k1S1(L2 −N2)+

dI2

dt
= β2S2I2/N2 − γ2I2 − k2I2(L3 −N3)+ + k1I1(L2 −N2)+

dR2

dt
= γ2I2 − ρ2R2 − k2R2(L3 −N3)+ + k1R1(L2 −N2)+

dS3

dt
= −β3S3I3/N3 + ρ3R3 − k3S3(L4 −N4)+ + k2S2(L3 −N3)+

dI3

dt
= β3S3I3/N3 − γ3I3 − k3I3(L4 −N4)+ + k2I2(L3 −N3)+

dR3

dt
= γ3I3 − ρ3R3 − k3R3(L4 −N4)+ + k2R2(L3 −N3)+

dN4

dt
= −k4 min(N4, Smax) + k3N3(L4 −N4)+.

In many ways, this model resembles a standard multi-group epidemiological model and
so we might hope to be able to find the basic reproductive number of the system using
standard multi-group methodology [12, 13]. It is straightforward to find the next generation
matrix, whose entries, tij, give the average numbers of secondary infections that result in
node i from the introduction of one infectious individual into node j when all individuals at
node i are susceptible. For within-patch transmission, we have

t33 =
β3

γ3 + k3(L4 −N4)+

t22 =
β2

γ2 + k2(L3 −N3)+

t11 =
β1

γ1 + k1(L2 −N2)+

.

Here, the term 1/(γi + ki(Li+1−Ni+1)+) is the average duration of infection for infectives in
node i, corrected for their departure on account of transportation. Movement of individuals
between nodes reduces the average number of within-node secondary infections, with this
effect being most noticeable if the node residence time is short compared to the duration of
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infection. For between-node transmission we have

t32 =
k2(L3 −N3)+

γ2 + k2(L3 −N3)+

t33

t21 =
k1(L2 −N2)+

γ1 + k1(L2 −N2)+

t22

t31 =
k1(L2 −N2)+

γ1 + k1(L2 −N2)+

k2(L3 −N3)+

γ2 + k2(L3 −N3)+

t33

t12 = t23 = t13 = 0.

Here, the term ki(Li+1 −Ni+1)+/(γi + ki(Li+1 −Ni+1)+) gives the probability that an infec-
tious individual in node i is transported to node i + 1 before it recovers.

Multi-group theory reveals that, for an irreducible system (i.e., one in which infection can
travel between any pair of nodes, possibly via intermediate nodes), the basic reproductive
number is given by the dominant eigenvalue of this matrix. Our system is not irreducible,
however, since infected animals can only move from a node to the following node: infection
can spread to succeeding nodes but not preceding ones. Consequently, the standard definition
of R0 for multi-group systems is not helpful to us. From the tij we can, however, easily
calculate the average number of secondary infections caused by the introduction of a single
infective into node j when all other individuals in the population are susceptible. These
quantities equal t11 + t21 + t31, t22 + t32 and t33, for nodes 1, 2 and 3, respectively.

We now turn to numerical simulation of the model. Unfortunately, the existing stud-
ies in the literature do not provide us with an appropriate set of parameter values to use.
Epidemiological parameters for the spread of FMD between various types of animals, in-
cluding pigs, have been quantified [17, 18, 22, 23, 24, 32, 33, 34, 38, 39, 46] but on spatial
scales that are quite different from our aggregated network description. On a large spatial
scale, transmission between farms has been described, for instance during the 1967/68 and
2001 outbreaks in the UK, and parameter estimates obtained [22, 23, 24, 32, 33, 34, 46].
Large-scale studies, however, take the individual unit of the model to be farms and so do
not consider transmission between individual animals.

On a small spatial scale, detailed transmission experiments [17, 18, 39, 38] have examined
the spread of infection between small numbers of closely housed animals, either within or
between pens. (Given the earlier comment regarding age-dependent epidemiological param-
eters, it is interesting to note that some of these experiments have been carried out on pigs
of different ages.) These experiments, which typically involve placing one or more infected
animals in close contact with a number of susceptible animals, demonstrate the high degree
of infectiousness of FMD. In many instances every susceptible animal became infected [17].
Instances in which all animals become infected provide less informative estimates of R0 than
might be hoped since the statistical methodology employed gives an infinite estimate for R0.
An alternative statistical approach [18] accounts for the time dependence in the experiment
and provides estimates of the transmission parameter β.

The literature provides us with satisfactory estimates for the average durations of infec-
tiousness and immunity [28], but not R0 (or, equivalently, β). For illustrative purposes, we
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shall take R0 to equal 10 at each level of the network in the absence of transportation.

Parameters for the Aggregated Agricultural Network Model with SIR
Parameters Definition Values Units Reference

R0 basic reproductive number 10
γ1, γ2, γ3 recovery rate 1/31,1/31,1/31 1/day [28]
ρ1, ρ2, ρ3 rate of loss of immunity 1/180,1/180,1/180 1/day [28]

All the simulations that follow assume that the network is initially in its demographic
steady state. The epidemiological assumptions that we have made lead to this holding for
all future times. (This would not be the case if we had deaths at the nursery or finisher
nodes.) We choose to introduce infection by infecting a certain number of individuals in the
initial node.

Our first simulation (Figure 10) illustrates the movement of a cohort of infectious individ-
uals through the network in the absence of ongoing transmission. We set β1 = β2 = β3 = 0,
and introduce infection by placing 50, 000 infected piglets in the grower node.

In this simulation infected animals either recover or get transported to the next node.
In the grower node, the number of infected animals simply decreases exponentially, while
the number of recovered animals increases and then declines. Within a fairly short time
period, the grower population is entirely replaced by susceptible individuals, reflecting the
rapid turnover of the grower node. We see the appearance of infection first at the nursery
and then at the finisher node. Since the system is at demographic equilibrium, we see no
change at the slaughter node.

For our second simulation (Figure 11), we assume that, in the absence of transportation,
the infection would have basic reproductive number equal to 10 at each node. Consequently,
we set βi/γi = 10. As before, we take the initial population to be in demographic equilibrium,
but we now introduce just 200 infective piglets into the grower node.

The system rapidly approaches an equilibrium in which infectious animals are present at
each node. The fraction of animals that are susceptible at equilibrium is much higher at the
grower node (24.8%) than at either the nursery (6.9%) or finisher (7.9%). This should be
expected since all animals arriving at the grower are susceptible, while the infection statuses
of those entering the nursery or finisher reflect the composition of the preceding node (i.e.,
grower and nursery nodes, respectively). For example, only 25% of the arrivees at the nursery
are susceptible. The susceptible fraction at the finisher is slightly higher than at the nursery
due to the replenishment of susceptibles by loss of immunity: this relatively slow process has
a higher chance of occurring at the finisher since an animal’s average residence time there is
longer than at the nursery.

The differing susceptible fractions between the nodes mean that, relative to the size of the
population of each node, there is less ongoing transmission at either the nursery or finisher
node than at the grower. The equilibrium infective fraction decreases as the supply chain is
traversed (46.8%, 31.5% and 16.2% at the grower, nursery and finisher, respectively), while
the recovered fraction increases (28.4%, 61.5% and 75.9%).
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Figure 10: Simulation I: Recovery and movement of infectious individuals through the net-
work, in the absence of transmission. Notice that susceptible numbers are plotted on different
scales (left vertical axis on each panel) from infective and recovered numbers (right vertical
axis on each panel). Parameter values are given in the text: each βi is set equal to zero,
infection is assumed to last 31 days and immunity lasts 180 days. The initial conditions are
N1 = 315, 000, N2 = 735, 000, N3 = 2, 100, 000 and N4 = 15, 000. Of the piglets at the first
node, 50, 000 are initially taken to be infectious, while the remainder of the population is
susceptible.

The impact of age-dependent transmission rates and the differing residence times is ex-
plored in our third simulation (Figure 12). Again only 200 infectives were introduced but
now we assume that younger animals are less infectious than older animals. The basic repro-
ductive numbers, in the absence of transportation, at the grower, nursery and finisher nodes
are taken to equal two, ten and fifteen, respectively. (We exaggerate the age-dependent
differences in R0 for illustrative purposes.)

Transportation has a major impact on the dynamics of the infection: the movement of
individuals out of the grower node is sufficiently rapid that the infection cannot persist in this
node. The number of infectives falls roughly exponentially, as does the number of recovereds,
although the latter only occurs after an initial rise (which largely reflects the recovery of the
initial pool of infectives). The dynamics in this node are somewhat reminiscent of those seen
in the first simulation (in which there was no transmission), although they play out on a
slower timescale since there is some ongoing transmission.
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Figure 11: Simulation II: Dynamics following the introduction of infection, with R0 = 10.
This value of the basic reproductive number determines the value of the transmission pa-
rameters (βi). Initial conditions and other parameter values are as in the previous figure,
except that only 200 of the 315,000 individuals at the grower node are infective at the initial
time.

Disease transmission at the nursery and finisher nodes occurs sufficiently rapidly that
the prevalence of infection approaches a positive, endemic, equilibrium at both. Observe
that, even though the transmission parameter in the nursery node is the same as it was in
the previous simulation, the equilibrium numbers of susceptibles and infectives are higher
here than they were in the previous simulation. This reflects the differences between the
compositions of the populations entering the nursery node in the two simulations, with more
susceptibles arriving in the age-dependent situation.
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Figure 12: Simulation III. Age-dependent transmission of infection. If there were no trans-
portation of animals, the basic reproductive numbers at the grower, nursery and finisher
nodes would equal 2, 10 and 15, respectively. These values of R0 determine the parameters
β1, β2 and β3. All other parameter values and initial conditions are as in the previous figure.
For the panel depicting the grower, note that susceptible numbers are plotted on a different
scale (left vertical axis) from the infective and recovered numbers (right vertical axis), and
these infective and recovered numbers are not in thousands. Also note that infection goes
extinct in the grower node while a positive equilibrium level of infection is achieved at the
nursery and finisher nodes.
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5 Concluding Remarks

In this paper we have demonstrated a methodological approach to the investigation of pro-
duction networks and their vulnerability to disturbances such as diseases. The stochastic
model and the resulting approximate deterministic system we employ were shown to agree
well, but are not validated. Rather, we carry out simulations and sensitivity analyses with
parameter values that are only loosely based on a swine network. We use the deterministic
model to show how to determine the parameters to which the model at these parameter
values exhibits the most sensitivity. Finally, we demonstrate how disease can be introduced
and the resulting network vulnerabilities analyzed. An interesting next step would involve
obtaining experimental data to validate and perhaps improve the model for a specific pro-
duction network. This would require using inverse problem algorithms with the data to
obtain estimates along with measures of associated uncertainty (e.g., standard errors [9, 43])
for the underlying transition rates ki.

Other obvious questions for further investigation involve the introduction of stochasticity
in the transmission dynamics of the infection. It is well known, for example, that random
effects can have a major impact on the invasion of an infection into a population. The use of
constant rates of recovery and loss of immunity for the infection should also be questioned.
These assumptions, which are biologically unrealistic for many infections, could be important
in cases such as the one presented above where the life span of the animals is comparable in
length to the duration of infection and immunity.

The randomness seen in the stochastic network model originates from the random move-
ment of discrete individuals from node to node. The analysis of Sections 2.2 and 3.2 shows
that, due to an averaging effect, these random effects become less important as the system
size N increases. Application of the stochastic transportation model to describe a real-world
situation should, therefore, account for the size of the groups in which pigs are transported
between nodes. If, for example, one thousand pigs were moved at a time, the appropriate
notion of an “individual” within the model would be a thousand pigs. Treating each group
of a thousand animals as a unit would lead to a marked increase in the magnitude of stochas-
tic fluctuations seen at the population level. Consequently, even though the system size in
our simulations is on the order of millions of pigs, it might be that the resulting stochastic
fluctuations in a more realistic model of the production system are closer to those shown in
Figure 3 than to those of Figure 2.

The approach outlined in this paper has rather obvious potential for application to a
wide range of problems. These include the investigation of the spread of diseases through
spatially or structurally distributed dynamic populations (e.g., avian flu through migrating
bird populations, contagious infections through highly mobile and/or age-structured human
and animal populations). In some of these cases the natural nodal structure would be a con-
tinuum, requiring stochastic and deterministic models with a continuum of spatial/structural
heterogeneities, leading to partial differential equation systems. Such applications would un-
doubtedly motivate the development of interesting new stochastic and deterministic mathe-
matical and computational methodologies.
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We also note that the approach and methodology presented here are useful for investiga-
tion of a wide range of perturbations other than disease (e.g., loss of capacity at a given node
such as a factory being shut down for some reason) in supply networks. In particular they
would be useful in the assessment of risk of a food-borne pathogen (e.g., salmonella, listeria,
etc.) entering the food chain [27] due to contamination (either accidental or deliberate) at
some stage of the supply chain.
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